TABLE OF CONTENTS

Specifications .. 1
Safety Summary .. 2
Description ... 3
Installation .. 3
Initial Start-Up ... 6
Normal Operation ... 7
Maintenance .. 8
Troubleshooting ... 9
Parts Identification Photos
 Figure 1, Front and Right Side ... 11
 Figure 2, Rear and Right Side View ... 12
 Figure 3, Control Panel .. 13
 Figure 4, Controller .. 14
Electrical Schematic .. 15
Electrical Wiring Diagram ... 16
Replacement Parts .. 17
Maintenance Records & Notes .. 18

INSERTS

Warranty Information .. Insert
SPECIFICATIONS

Temperature Range ... 250°F maximum with ethylene glycol/water mixture; minimum can be as low as plant water supply, but also depends on how much heat energy the mold is putting into the circulating water

Line Voltage ... 230/60/3 or 460/60/3 VAC see serial # tag on machine

Amps ... 26 @ 230V; 13 @ 460V

Controls:
 Type ... Self-tuning PID-Type MicroProcessor
 Control Voltage ... 120 VAC
 Accuracy .. ±1°F of setpoint

Pump/Motor .. 1-hp, 3500-rpm centrifugal pump rated at 30 gpm @ 38 psi; coupled to AC motor; air-cooled.

Heater ... 9kw

Tank ... 14-gallon

Mold Connections ... 1" NPT

Mold Supply Outlet ... 1" NPT

Cooling Water Inlet ... ½" NPT

Cooling Water Outlet ... ½" NPT

Overall Size .. 24" L x 24" W x 28-1/2" H

Shipping Size (crated) 32" L x 32" W x 40" H

Shipping Weight ... 200 lbs. (crated)
SAFETY SUMMARY

This manual uses the following words to show different levels of danger:

DANGER indicates that you are very likely to be killed or injured if you don't take the needed steps to avoid the hazard. This is the highest level of warning.

WARNING indicates that you could be killed or injured if you don't avoid the hazard.

CAUTION indicates you could receive moderate or minor injuries, or equipment could be damaged if you don't avoid the hazard.

DANGER
LIVE ELECTRIC PARTS could cause DEATH or SHOCK.
Lock out and tag out power before doing wiring.
Only qualified electricians are to do electrical work.

WARNING
OIL in this machine could cause FIRE.
Do not use any oil in this machine.

CAUTION
FITTINGS that are too tight could DAMAGE PUMP.
WEIGHT OF PIPES could DAMAGE PUMP.
Do not overtighten fitting on pump discharge.
DESCRIPTION

The Model MC90WC water cooled circulator controls mold temperature by circulating a mixture of water and glycol through channels in the mold. It can maintain temperatures as low as the plant water supply or as high as 250°F.

The Model MC90WC consists of a stainless steel tank, pump and motor, an electric heater with a submersed copper cooling coil, and electrical controls, all mounted on a welded stainless steel frame with casters for portability.

INSTALLATION

Installation must be done only by qualified plumbers and electricians.

1. Inspect Shipment

 Inspect carton containing unit. Remove machine from carton. Inspect machine for damage. Report any damage to carrier.

2. Move Circulator into Position

 Position the circulator as close to mold as possible; shorter hoses lose less heat. Make sure heat from this unit will not damage any other machine or material.

3. Connect Discharge Line

 Run a hose to mold from 1" NPT pump discharge. (See photo on page 11 to identify parts.)

 Hose must be rated for 250°F and 100 psi with hot water and ethylene glycol. IMS stocks several hoses that work well for this purpose. For additional information concerning a hose that suits your needs, contact an IMS customer service representative at 1-800-537-5375 (U.S.A. & Canada).

 If mold has more than one inlet, use a manifold near mold, and a single line to feed manifold. This will help prevent heat-loss. IMS also stocks manifolds for this purpose. For further information, contact an IMS customer service representative.

 Waterline insulation is also available and encouraged.
INSTALLATION (continued)

4. Connect Return Line

Run the same type of hose used on the discharge line between 1” NPT tank inlet and mold outlet or manifold.

5. Fill Tank

a. Use only a mixture of water and inhibited ethylene glycol (or inhibited propylene glycol) in this circulator. The fluid flow pattern through the tank is not designed for thick fluids like oil.

Other reasons to use only glycol and water are:

- Straight water is too corrosive for this application.
- Pure ethylene glycol without inhibitors becomes acidic and corrosive in operation and will not transfer heat well.
- Automotive anti-freeze also becomes acidic when used in a relatively open system such as this machine. Its inhibitors break down in a short time, forming a gel that prevents heat transfer. Also, automotive anti-freeze contains abrasives that will destroy the pump seal.

b. Decide on the ratio of ethylene (or propylene) glycol to water.

(1) The higher the glycol concentration the better the corrosion resistance and the higher the temperature at which the circulator can be run.

(2) The lower the glycol concentration the better the heat transfer ability.

(3) Use the lowest glycol concentration that will reach the temperature you need, but use at least 30% for corrosion resistance.

NOTE

A low fluid level switch is present to protect the heater and pump. This unit will not start if the fluid level is not satisfied.
INSTALLATION (continued)

(4) 80% ethylene glycol will reach about 250°F.

30% ethylene glycol will reach about 219°F, but will have almost twice the heat transfer ability that 80% would have.

6. Optional

Make any other connections your application requires. Installing insulating wrap around hoses will help prevent heat loss. For information concerning hose insulation, contact an IMS customer service representative at 1-800-537-5375.

7. Connect to Power

 a. Connect only to voltage listed on machine’s serial number tag.

 b. Install power cord that meets local codes. Heater is 9kW, pump motor is 1 hp. See serial tag for full-load amp rating.

 b. Connect to a fused disconnect or circuit breaker with a minimum amp capacity of 40 amps for 230 volts and 25 amps for 460 volts.

 c. Lock out / tag out power to circuit where you are going to connect circulator. Hard wire to fused disconnect or install plug so machine can be moved easily.

 d. Do not turn power on to circuit until doing checks in INITIAL STARTUP, below.

DANGER

LIVE ELECTRIC PARTS could cause DEATH or SHOCK.

Lock out and tag out power before doing wiring.

Only qualified electricians are to do electrical work.
INITIAL START-UP

1. Power must be locked out and tagged out.

3. Check plumbing installation.

4. Check wiring installation.

5. Turn on plant power to circuit. Turn machine’s main disconnect circuit breaker on (P. 11, Figure 1).

6. Check direction of pump rotation. It must be clockwise when viewed from end of motor. Press START button and let pump run for a few seconds; then shut it off and use a flashlight to observe motor rotation. If direction is reversed, have qualified electrician lock out / tag out power and reverse any two power leads.

8. Press START button again and let unit run.

9. Check for plumbing leaks while machine is running. If there are leaks:
 a. Stop machine. Lock out and tag out power.
 b. Correct leaks before starting up again.

10. Check fluid level. Ensure that fluid level satisfies low fluid level switch after mold and lines are filled with fluid.
 Do not fill to maximum level – fluid will expand when heated, and could overflow the tank.

 DANGER
 LIVE ELECTRIC PARTS could cause DEATH or SHOCK.
 Lock out and tag out power before doing wiring.
 Only qualified electricians are to do electrical work.
NORMAL OPERATION

1. Circulator must have been installed according to INSTALLATION and must have gone through checks detailed in INITIAL START-UP.

2. Turn on power to circuit. Turn circuit breaker on.

3. Press PUMP ON button. The SYSTEM ON light will come on. The pump must remain on at all times. The heater will not work if the pump is turned off.

 The RETURN TEMPERATURE display will show the temperature of the water returning from the mold.

 The controller will show the TANK TEMPERATURE as the top set of numbers on the PROCESS CONTROLLER.

 The SETPOINT will be shown as the bottom set of numbers on the PROCESS CONTROLLER.

4. Turn HEATER switch on. (If you know that you will not be using heat, you can leave this switch off.) The HEATER “ON” light will turn on whenever the heating circuit is on. When lit, this means that the controller is calling for heat, and the heating element is currently on.

5. Set temperature setpoint to the necessary temperature.

 Keep in mind that the mold temperature does not match the fluid temperature you set. When heating, the mold is usually cooler than the fluid; when cooling, the mold is usually a little hotter. Controller will turn on power to heater or will turn on water cooling to maintain temperature.

 To adjust the setpoint (see figure 3 on page 8), press the UP arrow to increase the setpoint or the DOWN arrow to decrease the setpoint.

6. If the tank temperature falls below the setpoint:

 - The OP1 light on the controller will come on, indicating that the control relay is sending power to the heater power relay.

 - If the heating circuit is on, the heater will come on.

 - You will see the tank temperature rise until it meets the setpoint.
NORMAL OPERATION (continued)

7. If the tank temperature rises above the setpoint:
 - The OP2 light on the controller will come on, indicating that the control relay is sending power to the cooling water power relay.
 - The cooling water will flow through.
 - You will see the tank temperature fall until it meets the setpoint (or reaches the lowest temperature that the ambient temperature allows.)

8. To shut down circulator:
 a. Turn down temperature, to allow heaters to cool.
 b. After about 5 minutes, push red stop button.

MAINTENANCE

1. Check tank level often; the water should satisfy the low fluid level switch. Always check when water is cold.

2. See component manuals for repair procedures. All replacement parts are available from IMS.
TROUBLESHOOTING

1. Motor and Heater Not Working:
 - Check water level. The low-level float switch interrupts control voltage to the machine if the water level drops too low.
 - Is main disconnect ON?
 - Is machine plugged in?
 - Is there power to circuit that machine is plugged into?
 - Turn machine circuit breaker OFF then ON.
 - Press STOP switch fully. Then press START switch.
 - Have qualified electrician check function of float switch.

2. Tank temperature below setpoint and not rising. Pump is on.
 - Is HEATER CIRCUIT switch ON?
 - Is controller's OP1 light on?
 - Is the Heater Light ON?
 - Compare tank temperature reading to return temperature reading.
 - Have qualified electrician check controller output relay.
 - Have qualified electrician check heater power relay.
 - Have qualified electrician check heater elements.

DANGER

LIVE ELECTRIC PARTS could cause DEATH or SHOCK.

Lock out and tag out power before doing service.

Only qualified electricians are to do electrical work.
TROUBLESHOOTING (continued)

3. Tank temperature above setpoint and not falling. Pump is on.
 - Is the COOLING light on?
 - Is controller’s OP2 light on?
 - Compare tank temperature reading to return temperature reading.
 - Have qualified electrician check controller output relay.
 - Is plant water on?
 - Is machine getting cooling water?
 - Is cooling solenoid getting voltage?
Figure 1

FRONT AND LEFT SIDE VIEW

Heater Switch

Main Disconnect

Return Temperature Indicator

Controller

Pump Switch

Cooling Water Supply Inlet

Cooling Water to Drain

Fluid to Process Outlet (to process)

Return Fluid Inlet (process return)

Tank Drain
Figure 2
REAR AND RIGHT SIDE VIEW

14 Gallon Tank
Return Fluid Inlet
Tank Drain
Figure 3
CONTROL PANEL

- System On Light
- Return Temperature Display
- Heating On Light
- Controller (see next page)
- Main Circuit Breaker
- Pump On Button
- Pump Off Button
- Cooling On Light
- Heater Circuit Switch
Figure 4

PROCESS TEMPERATURE CONTROLLER

- Cooling Control Relay (OP2) Light
- Alarm Light
- Tank Temperature Display
- Heater Control Relay (OP1) Light
- Setpoint Temperature Display
- Temperature Increase Button
- Temperature Decrease Button
REPLACEMENT PARTS

Pump ... 161851
Heating element, 230 volt 148639
Heating element, 460 volt 148812
Mercury Contactor 106192
Controller .. 161838
Return Temperature Display 161839
Motor Starter Contactor 160234
Motor Starter Overload, 230 volt 162061 (4 - 6 amp)
Motor Starter Overload, 460 volt 158978 (1 - 1.6 amp)
Pump On/Off Switch 158874
Breaker, 240/60/3, 40 AMP 106156
Breaker, 460/60/3, 25 AMP 106234
Indicator Lights (Pump, Heater, Fan) 106263
Thermocouple, Tank/Process (36") 160317
Thermocouple, Return (48") 163316
Low Level Switch 161770
Heat ON Toggle Switch 158902
High Temperature Limit Switch 162549
Sacrificial Anode 162082
Primary Line Fuses, 230VAC 158914
Primary Line Fuses, 460VAC 158917
Primary Transformer Fuses 230/460VAC 158916
Control Transformer Fuse 158921
MAINTENANCE RECORD
AND NOTES